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PROBLEM STATEMENT

» Buildings account for 40% of European energy consumption [1]

= EU aim: 60% reduction in 2030; fully decarbonised in 2050 [2]



PROBLEM ANALYSIS

50% energy to heating, ventilation and air-conditioning (HVAC) systems [3]

Faults in HVAC systems can cause up to 30% energy waste [4]

Need for fault detection and diagnosis (FDD) methods
» | ack of adoption of FDD methods in practice [5]

= Little research on real-time implementation [5]



RESEARCH AIM

» Real-time diagnosis of air-handling units

(AHUSs)

» |[mportant part of most HVAC systems

= | arge energy consumption within HVAC

system [6]

Figure 1: Air-handling unit example



RESEARCH QUESTIONS

Alternative to data-driven method: Bayesian network-based FDD

o How to transfer expert knowledge to a probabilistic network?

Which faults appear frequently in AHUs?

» How can diagnosis be performed in real-time?



RESEARCH QUESTION

'How can Bayesian network-based fault diagnosis accurately find faults for

air-handling units in real-time based on expert knowledge?’
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CASE STUDY
DESCRIPTION

- AHU overview

- Scope




AHU OVERVIEW

Exhaust temperature Return temperature Return pressure Return pressure
sensor sensor difference sensor sensor

----------- < LB7-R/14.2
= P
ressure sensors Dol ot e
Fan_r
Energy
| Fa NS ﬁ recovery
wheel Supply Supply
Inlet temperature  SUPPly pressure temperature  pressure
sensor difference sensor sensor sensor
@ @ Preheating @
temperature  Heating coil Cooling coil
= femperature sensors " 7 sensor 1 i ey
L - > LB7-1/ 142

i | T2

. Fan_s
- . d | . . | Heating coil E Return water
Heating and cooling coils pump s S
Heating coil senser % valve
valve O_>I< :
I

A v oA

» Energy recovery wheel (ERW) e g
Figure 2: Case study AHU diagram

PR -



AHU OVERVIEW
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SCOPE
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FDD MODEL

- 4S3F framework
- Faults and symptoms

- Diagnostic Bayesian network

- Symptom thresholds




FOUR SYMPTOMS THREE FAULTS (4S3F) FRAMEWORK

= Four symptom types and three

fault types

» Separates symptom detection

from fault diagnosis [8]

» Fault inference with diagnostic

Bayesian network (DBN)
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DIAGNOSED FAULTS

» 27 AHU faults, based on literature

= Control faults:

o Incorrect setpoint or control signal

» Component faults:
o Sensor bias and failure

o Component failure, leakage or fouling
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DETECTED SYMPTOMS

» 35 rule-based symptoms

» Epsilon thresholds determine

sensitivities

» Example S1:
|Ti _To| > &
81 = 1 OC
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DIAGNOSTIC
BAYESIAN NETWORK

= Conditional probability parameters
» Top: temperature-related

» Bottom: pressure-related
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DIAGNOSIS PARAMETERS

= Configurable diagnosis period: 1-sample up to daily diagnosis

= Symptom thresholds, improving symptom detection accuracy
o Total number of samples

o Consecutive number of samples

» Fault diagnosis threshold of 60%
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RESULTS

- Experimental
- Historical

- Real-time
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EXPERIMENT RESULTS

- Description of experiments
- Detected symptoms

- Diagnosed faults



DESCRIPTION OF EXPERIMENTS

100 -

— U _sfan
. . — p_sset
= 13 experiments to validate os
8{}_
control and sensor faults
a
60 - \I

= All conducted in March 2024

Control signal (%)

» Example: fan control experiment

20

09:00 10:00 11:00 12:00 13:00 14:00
Time

Figure 9: Fan control experiment sensor data

15:00
2024-Mar-23

- 200

I
—a
[42]
[==]

- 100

ressure (Pa)

o



EXPERIMENT RESULTS

Control faults were diagnosed accurately

(9/13)

Pressure sensor fault not included (2/13)

HC failure during HCV experiment (1/13)

DBN could not distinguish between

supply temperature sensor and HC

failure faults (1/13)
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EXPERIMENT DIAGNOSIS PERIODS

» Five diagnosis periods

» Diagnosis period affected number of

false positives

» Trade-off between accuracy and early

diagnosis
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Figure 11: Diagnosed faults with different diagnosis periods
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DETECTED SYMPTOMS
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Figure 12: Detected symptoms in historical data
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DIAGNOSED FAULTS
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= Mostly control faults

» Biases detected often
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DIAGNOSED FAULTS
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- Real-time diagnosis framework
- Diagnosis setup

- Diagnosis results



REAL-TIME DIAGNOSIS FRAMEWORK

» Data streaming software Kafka used to

collect real-time data

» Stored locally in time-series database

InfluxDB

» DBN performs diagnosis on —
configurable period e ——
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~ (2R} 281 _TT-A2M--

Figure 15: InfluxDB Ul
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DIAGNOSIS SETUP

» Data collected between the 21st and 25th
of June 2024

= Diagnosis on data from 08:00 until 20:00

on the 24t of June

» Symptom thresholds equal to setup for

historical results
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DIAGNOSIS RESULTS
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SUSTAINABILITY
IMPLICATIONS




SUSTAINABILITY IMPLICATIONS

» Historical faults with highest impact on energy usage:

o Lower temperature setpoint decreases energy usage (64% of the days considered)
o Incorrect HCV control fault increases energy usage (43% of days considered)
o Unstable or incorrect ERW control increases energy usage (11% of days considered)

» Real-time result related to energy usage:

o ERW used for cold recovery in addition to heat recovery
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CONCLUSION




RESEARCH QUESTION

'How can Bayesian network-based fault diagnosis accurately find faults for

air-handling units in real-time based on expert knowledge?’
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CONCLUSION

» The proposed method can reliably diagnose AHU control faults in real-time
» However, diagnosis period of at least one hour is recommended

» |ncorrect ERW and HCV control signals frequently diagnosed
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LIMITATIONS

= The DBN relies on estimations for parameters and symptom rules
= Missing sensor data impacted historical results
» Transient data may have caused false positive symptoms

= Alert data missing in real-time framework
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RECOMMENDATIONS FOR FUTURE RESEARCH

Expanding the DBN

o Summer season and outside schedule
o Efficiency estimations for the coils and fans

o Frozen sensor symptoms [8]

Filtering transient data [9]

Integrating alerts in Katka framework

Applying the model to different AHUs
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DIAGNOSTIC
BAYESIAN NETWORK

» Temperature-related
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DIAGNOSTIC
BAYESIAN NETWORK
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DESCRIPTION OF EXPERIMENTS

Date Fault
03/23/2024 | Supply fan control set to 30%
= 13 experiments to validate Supply fan control set to 70%

ERW control set to 0%
control and sensor faults

03/24/2024 | Supply pressure setpoint set to 235 Pa

' Suppl int set to 135 P
» All conducted in March 2024 upply pressure setpoint set to a

Supply pressure sensor set to 130 Pa

03/29/2024 | HCV control set to 0%

HCYV control set to 30%

HCYV control set to 100%

03/30/2024 | Supply pressure sensor set to 200 Pa

Temperature setpoint set to 23 °C

Temperature setpoint set to 17 °C

Supply temperature sensor set to 17 °C

Figure 20: Conducted experiments
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EXPERIMENT RESULTS

= Extra symptom added

= ERW control now also diagnosed correctly
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Figure 21: Revised DBN (top-right part)
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EXPERIMENTAL
SENSITIVITY
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(c) DBN containing only strong links.
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HISTORICAL SENSITIVITY
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Figure 21: Sensitivity of symptom thresholds for historical results
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HISTORICAL SENSITIVITY
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Figure 22: Sensitivity of fault threshold for historical results
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Figure 23: Detected symptoms for real-time data
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Figure 24: Diagnosed faults for real-time data
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Figure 26: Real-time control data
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